
www.umbc.edu

CMSC201
Computer Science I for Majors

Lecture 06 – Decision Structures

Prof. Jeremy Dixon

Based on concepts from: https://blog.udemy.com/python-if-else/

www.umbc.edu

Last Class We Covered
• Just a bit about main()
• More of Python’s operators

– Comparison operators
– Logical operators

• LOTS of practice using these operators
– Reinforced order of operations

• Boolean variables

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Building Recruiting and Inclusion for
Diversity

• UMBC is one of fifteen schools to participate
in BRAID.

• The first 400 respondents to complete the
survey across the BRAID campuses will receive
a $15 Amazon gift card.

www.umbc.edu

Today’s Objectives
• Understand decision structures

– One-way, two-way, and multi-way
– Using the if, if-else, and
if-elif-else statements

• Review control structures & conditional operators
• More practice using the Boolean data type
• Learn how to implement algorithms

using decision structures

www.umbc.edu

Simple Decisions
• So far, we’ve only seen programs with

sequences of instructions
– This is a fundamental programming concept
– But it’s not enough to solve every problem

• We need to be able to control the flow of
a program to suit particular situations
– What can we use to do that?

www.umbc.edu

Conditional Operators (Review)

Python Mathematics Meaning
< < Less than
<= ≤ Less than or equal to
== = Equal to
>= ≥ Greater than or equal to
> > Greater than
!= ≠ Not equal to

www.umbc.edu

Conditional Operators (Review)

Python Mathematics Meaning
< < Less than
<= ≤ Less than or equal to
== = Equal to
>= ≥ Greater than or equal to
> > Greater than
!= ≠ Not equal to

www.umbc.edu

Control Structures (Review)
• A program can proceed:

– In sequence
– Selectively (branching): make a choice
– Repetitively (iteratively): looping
– By calling a function

focus of
today’s lecture

www.umbc.edu

Control Structures: Flowcharts

focus of
today’s lecture

www.umbc.edu

One-Way Selection Structures

www.umbc.edu

One-Way Selection Structures
• Selection statements allow a computer to

make choices
– Based on some condition

def main():
weight = float(input("How many pounds is your suitcase? "))

if weight > 50:
print("There is a $25 charge for luggage that heavy.")

print("Thank you for your business.")

main()

www.umbc.edu

Temperature Example
• Convert from Celsius to Fahrenheit

def main():
celsius = eval(input("What is the Celsius temperature? "))
fahrenheit = 9/5 * celsius + 32

print("The temperature is ", fahrenheit,
" degrees Fahrenheit.")

main()

www.umbc.edu

Temperature Example - Modified
• Let’s say we want to modify the program to

print a warning when the weather is extreme

• Any temperature that is…
– Over 90 degrees Fahrenheit

• Will cause a hot weather warning

– Lower than 30 degrees Fahrenheit
• Will cause a cold weather warning

www.umbc.edu

Temperature Example - Modified
• Input:

– The temperature in degrees Celsius (call it celsius)
• Process:

– Calculate fahrenheit as 9/5 * celsius + 32

• Output:
– fahrenheit
– If fahrenheit > 90

• Print a heat warning
– If fahrenheit < 30

• Print a cold warning

www.umbc.edu

Temperature Example - Modified
• This new algorithm has two decisions at the

end

• The indentation indicates that a step should
be performed only if the condition listed in
the previous line is true

www.umbc.edu

Temperature Example Flowchart
Start

Input: celsius
temperature

fahrenheit =
9/5 * celsius + 32

Print:
fahrenheit

fahrenheit
> 90

TRUE

FALSE

Print a heat
warning

fahrenheit
< 30

TRUE Print a cold
warning

FALSE

End

www.umbc.edu

Temperature Example Code
def main():

celsius = eval(input("What is the Celsius temp? "))
fahrenheit = 9 / 5 * celsius + 32
print("The temp is ", fahrenheit,

“ degrees fahrenheit.")
if fahrenheit > 90:

print("It's really hot out there, be careful!")
if fahrenheit < 30:

print("Brrrrr. Be sure to dress warmly!")

main()

www.umbc.edu

“if” Statements

www.umbc.edu

“if” Statements
• The Python if statement is used to

implement the decision

• if <condition>:
<body>

• The body is a sequence of one or more
statements indented under the if heading

www.umbc.edu

“if” Semantics
• The semantics of the if should be clear

– First, the condition in the heading is evaluated
– If the condition is True

• The statements in the body are executed, and then
control passes to the next statement in the program.

– If the condition is False

• The statements in the body are skipped, and control
passes to the next statement in the program.

www.umbc.edu

One-Way Decisions
• The body of the if either executes or not

depending on the condition
• Control then passes to the next (non-body)

statement after the if

• This is a one-way or simple decision

www.umbc.edu

Practicing Conditions

www.umbc.edu

What is a Condition?
• What does a condition look like?

• Answer:
– All of our comparison (relational) operators

plus the logical (Boolean) operators

www.umbc.edu

Two-Way Selection Structures

www.umbc.edu

Two-Way Decisions
• In Python, a two-way decision can be

implemented by attaching an else clause onto
an if clause.

• This is called an if-else statement:

if <condition>:
<statements>

else:
<statements>

www.umbc.edu

How Python Handles if-else

• When Python first encounters this structure,
it first evaluates the condition.
– If the condition is true,

the statements under the if are executed.
– If the condition is false,

the statements under the else are executed.
• In either case, the statements following the
if-else are only executed after one of
the sets of statements are executed.

www.umbc.edu

Two-Way Code Framework
if condition1 == True:
execute code1

else:
execute code2

• Only execute code1 if condition1 is True
• If condition1 is not True, run code2

www.umbc.edu

Formatting Selection Structures
• Each if-else statement must close with a colon (:)

• Code in the body (that is executed as part of the
if-else statement) must be indented
– By four spaces
– Hitting the “Tab” key in many editors (including

emacs) will automatically indent it by four spaces

www.umbc.edu

Simple Two-Way Example
def main():

x = 5
if x > 5:

print("X is larger than five!")
else:

print("X is less than or equal to five!")

main()

www.umbc.edu

Simple Two-Way Example #2
def main():

num = int(input("Enter a number: "))

if num % 2 == 0:
print("Your number is even.")

else:
print("Your number is odd.")

main()
What does

this code do?
It checks if a number

is even or odd

www.umbc.edu

Example – Dangerous Dinosaurs
• You have just been flown to an island where

there are a wide variety of dinosaurs

• You are unsure which are dangerous so we
have come up with some rules to figure out
which are dangerous and which are not

www.umbc.edu

LIVECODING!!!

www.umbc.edu

Dinosaurs Example
• Sample rules:

– If the dinosaur has sharp teeth, it is dangerous
– If the dinosaur is behind a large wall, it is not

dangerous
– If the dinosaur is walking on two legs, it is

dangerous
– If the dinosaur has sharp claws and a beak, it is

dangerous

www.umbc.edu

Dinosaurs Example - Variables
• What are some reasonable variables for this

code?

isSharp for sharp teeth
isWalled for behind large wall
isBiped for walking on two legs
isClawed for sharp claws
isBeaked for has beak

www.umbc.edu

Dinosaurs Example - Code
def main():

print("Welcome to the DinoCheck 1.0")
print("Please answer 'True' or 'False' for each question")
isSharp = input ("Does the dinosaur have sharp teeth? ")
isWalled = input ("Is the dinosaur behind a large wall? ")
isBiped = input ("Is the dinosaur walking on two legs? ")
isClawed = input ("Does the dinosaur have sharp claws? ")
isBeaked = input ("Does the dinosaur have a beak? ")

if isSharp == "True":
print("Be careful of a dinosaur with sharp teeth!")

if isWalled == "True":
print("You are safe, the dinosaur is behind a big wall!")

if isBiped == "True":
print("Be careful of a dinosaur who walks on two legs!")

if (isClawed == "True") and (isBeaked == "True"):
print("Be careful of a dinosaur with sharp claws and a beak!")

print("Good luck!")

main()

www.umbc.edu

Dinosaurs Example v2 - Code
def main():

print("Welcome to the DinoCheck 1.0")
print("Please answer '0' or '1' for each question")
isSharp = int(input ("Does the dinosaur have sharp teeth? "))
isWalled = int(input ("Is the dinosaur behind a large wall? "))
isBiped = int(input ("Is the dinosaur walking on two legs? "))
isClawed = int(input ("Does the dinosaur have sharp claws? "))
isBeaked = int(input ("Does the dinosaur have a beak? "))

if isSharp:
print("Be careful of a dinosaur with sharp teeth!")

if isWalled:
print("You are safe, the dinosaur is behind a big wall!")

if isBiped:
print("Be careful of a dinosaur who walks on two legs!")

if isClawed and isBeaked:
print("Be careful of a dinosaur with sharp claws and a beak!")

print("Good luck!")

main()

changes are in blue

www.umbc.edu

Multi-Way Selection Structures

www.umbc.edu

Bigger (and Better) Decision Structures
• One-Way and Two-Way structures are useful

• But what if we have to check multiple
exclusive conditions?
– Exclusive conditions do not overlap with each other
– e.g., Value of a playing card, letter grade in a class

• What could we use?

www.umbc.edu

Multi-Way Code Framework
if <condition1>:

<case1 statements>
elif <condition2>:

<case2 statements>
elif <condition3>:

<case3 statements>
more possible "elif" statements
else:

<default statements>
“else” statement

is optional

www.umbc.edu

Multi-Way Decision - Example
• Let’s pretend that a mean CS professor gives a

five-point attendance quiz at the beginning of
every class.

• Grades are as follows:
5-A, 4-B, 3-C, 2-D, 1-F, 0-F

• What would the code look like?

www.umbc.edu

Multi-Way Decision - Example

def main():
score = int(input("Enter your quiz score out of 5:"))
if score == 5:

print("You earned an A")
elif score == 4:

print("You earned a B")
elif score == 3:

print("You earned a C")
elif score == 2:

print("You earned a D")
else:

print("You failed the quiz")

main()

www.umbc.edu

Nested Selection Structures

www.umbc.edu

Nested Decision Structures

• Up until now, we have only used a single level
of decision making

• What if we want to make decisions within
decisions?

Nested If-Else Statements

www.umbc.edu

Nested Decision Structures

if condition1 == True:
if condition2 == True:

execute code1
elif condition3 == True:

execute code2
else:

execute code3
else:

execute code4

www.umbc.edu

Nested Decision Structures - Example

• You recently took a part-time job to help pay
for your video game addiction at a local cell-
phone store

• If you sell at least $1000 worth of phones in a
pay period, you get a bonus

• Your bonus is 3% if you sold at least 3 iPhones,
otherwise your bonus is 2%

www.umbc.edu

Nested Decision Structures - Example

def main():
totalSales = float(input("Please enter your total sales:"))
if totalSales >= 1000.00:

iPhonesSold = int(input("Enter the number of iPhones
sold:"))

if iPhonesSold >= 3:
bonus = totalSales * 0.03

else:
bonus = totalSales * 0.02

print("Your bonus is $", bonus)
else:

print ("Sorry, you do not get a bonus this time.")
main()

www.umbc.edu

Example: Max of Three

www.umbc.edu

Study in Design: Max of Three
• Now that we have decision structures, we can

solve more complicated programming
problems.

• The downside is that writing these programs
becomes more complicated too!

• Suppose we need an algorithm to find the
largest of three numbers.

www.umbc.edu

Study in Design: Max of Three

def main():
x1, x2, x3 = eval(input("Please enter three values: "))

missing code sets max to the value of the largest

print("The largest value is", max)
main()

www.umbc.edu

Strategy 1:
Compare Each to All

• This looks like a three-way decision, where we
need to execute one of the following:
max = x1
max = x2
max = x3

• All we need to do now is preface each one of
these with the right condition!

www.umbc.edu

Strategy 1: Compare Each to All
• Let’s look at the case where x1 is the largest.
• if x1 >= x2 >= x3:

max = x1

• Is this syntactically correct?
– Many languages would not allow this compound condition
– Python does allow it, though. It’s equivalent to

x1 ≥ x2 ≥ x3.

www.umbc.edu

Strategy 1: Compare Each to All
• Whenever you write a decision, there are two

crucial questions:
– When the condition is true, is executing the body

of the decision the right action to take?
• x1 is at least as large as x2 and x3, so assigning max to

x1 is OK.
• Always pay attention to borderline values!!

www.umbc.edu

Strategy 1: Compare Each to All
– Secondly, ask the converse of the first question,

namely, are we certain that this condition is true
in all cases where x1 is the max?

• Suppose the values are 5, 2, and 4.
• Clearly, x1 is the largest, but does x1 ≥ x2 ≥ x3 hold?
• We don’t really care about the relative ordering of x2

and x3, so we can make two separate tests: x1 >= x2
and x1 >= x3.

www.umbc.edu

Strategy 1: Compare Each to All
• We can separate these conditions with and!
if x1 >= x2 and x1 >= x3:

max = x1
elif x2 >= x1 and x2 >= x3:

max = x2
else:

max = x3

• We’re comparing each possible value against all the
others to determine which one is largest.

www.umbc.edu

Strategy 1: Compare Each to All
• What would happen if we were trying to find

the max of five values?
• We would need four Boolean expressions,

each consisting of four conditions anded
together.

• Yuck!

www.umbc.edu

Strategy 2: Decision Tree
• We can avoid the redundant tests of the

previous algorithm using a decision tree
approach.

• Suppose we start with x1 >= x2. This
knocks either x1 or x2 out of contention to
be the max.

• If the condition is true, we need to see which
is larger, x1 or x3.

www.umbc.edu

FALSETRUE TRUE

FALSETRUE

Strategy 2: Decision Tree
Start

x1 >= x2

FALSEx1 >= x3 x2 >= x3

max = x3max = x1 max = x3max = x2

End

www.umbc.edu

Strategy 2: Decision Tree
• if x1 >= x2:

if x1 >= x3:
max = x1

else:
max = x3

else:
if x2 >= x3:

max = x2
else

max = x3

www.umbc.edu

Strategy 2: Decision Tree
• This approach makes exactly two

comparisons, regardless of the ordering of the
original three variables.

• However, this approach is more complicated
than the first
– To find the max of four values you’d need
if-elses nested three levels deep with
eight assignment statements.

www.umbc.edu

Strategy 3: Sequential Processing
• How would you solve the problem?
• You could probably look at three numbers and

just know which is the largest. But what if you
were given a list of a hundred numbers?

• One strategy is to scan through the list looking
for a big number. When one is found, mark it,
and continue looking. If you find a larger
value, mark it, erase the previous mark, and
continue looking.

www.umbc.edu

Strategy 3: Sequential Processing
Start max = x1

x2 > max

FALSE

TRUE

max = x2

x3 > max

FALSE

TRUE

max = x3

End

www.umbc.edu

Strategy 3: Sequential Processing
• This idea can easily be translated into Python.
max = x1
if x2 > max:

max = x2
if x3 > max:

max = x3

www.umbc.edu

Strategy 3: Sequential Programming

• This process is repetitive and lends itself to
using a loop.

• We prompt the user for a number, we
compare it to our current max, if it is larger,
we update the max value, repeat.

www.umbc.edu

Strategy 3: Sequential Programming
maxn.py
Finds the maximum of a series of numbers

def main():
n = eval(input("How many numbers are there? "))

Set max to be the first value
max = eval(input("Enter a number >> "))

Now compare the n-1 successive values
for i in range(n-1):

x = eval(input("Enter a number >> "))
if x > max:

max = x

print("The largest value is", max)
main()

www.umbc.edu

Strategy 4: Use Python
• Python has a built-in function called max that

returns the largest of its parameters.

def main():
x1, x2, x3 = eval(input("Please enter three values: "))
print("The largest value is", max(x1, x2, x3))

www.umbc.edu

Some Lessons
• There is usually more than one way to solve a

problem.
– Don’t rush to code the first idea that pops out of

your head. Think about the design and ask if
there’s a better way to approach the problem.

– Your first task is to find a correct algorithm. After
that, strive for clarity, simplicity, efficiency,
scalability, and elegance.

www.umbc.edu

Some Lessons
• “BE” the computer.

– One of the best ways to formulate an
algorithm is to ask yourself how you would
solve the problem.

– This straightforward approach is often
simple, clear, and efficient enough.

www.umbc.edu

Some Lessons
• Generality is good.

– Considering a more general problem can
lead to a better solution for a special case.

– If the max of n program is just as easy to
write as the max of three, write the more
general program because it’s more likely to
be useful in other situations.

www.umbc.edu

Some Lessons
• Don’t reinvent the wheel.

– If the problem you’re trying to solve is one that
lots of other people have encountered, find out if
there’s already a solution for it!

– As you learn to program, designing programs from
scratch is a great experience!

– Truly expert programmers know when to borrow.
• LAZINESS!

www.umbc.edu

Announcements
• Your Lab 3 is meeting normally this week!

– Make sure you attend your correct section
–

• Homework 3 is out
– Due by Thursday (Sept 24th) at 8:59:59 PM

• Homeworks are on Blackboard
– Weekly Agendas are also on Blackboard

	CMSC201� Computer Science I for Majors��Lecture 06 – Decision Structures
	Last Class We Covered
	Any Questions from Last Time?
	Building Recruiting and Inclusion for Diversity
	Today’s Objectives
	Simple Decisions
	Conditional Operators (Review)
	Conditional Operators (Review)
	Control Structures (Review)
	Control Structures: Flowcharts
	One-Way Selection Structures
	One-Way Selection Structures
	Temperature Example
	Temperature Example - Modified
	Temperature Example - Modified
	Temperature Example - Modified
	Temperature Example Flowchart
	Temperature Example Code
	“if” Statements
	“if” Statements
	“if” Semantics
	One-Way Decisions
	Practicing Conditions
	What is a Condition?
	Two-Way Selection Structures
	Two-Way Decisions
	How Python Handles if-else
	Two-Way Code Framework
	Formatting Selection Structures
	Simple Two-Way Example
	Simple Two-Way Example #2
	Example – Dangerous Dinosaurs
	LIVECODING!!!
	Dinosaurs Example
	Dinosaurs Example - Variables
	Dinosaurs Example - Code
	Dinosaurs Example v2 - Code
	Multi-Way Selection Structures
	Bigger (and Better) Decision Structures
	Multi-Way Code Framework
	Multi-Way Decision - Example
	Multi-Way Decision - Example
	Nested Selection Structures
	Nested Decision Structures
	Nested Decision Structures
	Nested Decision Structures - Example
	Nested Decision Structures - Example
	Example: Max of Three
	Study in Design: Max of Three
	Study in Design: Max of Three
	Strategy 1:�Compare Each to All
	Strategy 1: Compare Each to All
	Strategy 1: Compare Each to All
	Strategy 1: Compare Each to All
	Strategy 1: Compare Each to All
	Strategy 1: Compare Each to All
	Strategy 2: Decision Tree
	Strategy 2: Decision Tree
	Strategy 2: Decision Tree
	Strategy 2: Decision Tree
	Strategy 3: Sequential Processing
	Strategy 3: Sequential Processing
	Strategy 3: Sequential Processing
	Strategy 3: Sequential Programming
	Strategy 3: Sequential Programming
	Strategy 4: Use Python
	Some Lessons
	Some Lessons
	Some Lessons
	Some Lessons
	Announcements

